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Chaotic Principle: Some Applications to 
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Some models for developed turbulence are considered; they are shown to obey 
a large-fluctuations theorem, and one of them also obeys a response reciprocity 
relation of Onsager type. This illustrates and extends ideas and techniques 
developed in earlier works mainly lbr nonequilibrium problems in statistical 
mechanics. 
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1. I N T R O D U C T I O N .  EARLIER RESULTS 

The question, "What  are the measures describing turbulence?" has been 
repeatedly raised in a clear form by Ruelle (e.g., Ruelle, 13~1 pp. 6-8), who 
has proposed on many occasions that the probability distributions describ- 
ing turbulence should share some of the properties enjoyed by the SRB 
distributions for Axiom A attractors: in fact it has become customary to 
call SRB distributions the probabili ty distributions on the phase space that 
describes the statistics of turbulent (chaotic) motionsJ ~~ 

It does not seem that Ruelle has written explicitly on how the above 
prescription could be actually implemented for testing, but his idea has 
been made quite clear through his writings and seminars. Nevertheless the 
generality find the breadth of the proposal have never really been picked up 
with the purpose of obtaining concrete predictions. 

Recently the following interpretation of Ruelle's prescription for 
describing turbulence and, more generally, motions having an empirically 
chaotic nature has been proposed~t3"14~: 
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Chaotic Hypothesis. A reversible many-particle system in a stationary 
state can be regarded as a smooth transitive Anosov system for the purpose 
of computing macroscopic properties. 

See refs. I, 3, 32, and 33 for the notion and properties of Anosov 
systems. In the very common case of nonreversible systems one has to 
replace the transitive Anosov property with the more general AxiomA 
system propertyJ 32J 

The time evolution is described by a flow V, generated by differential 
equations on a continuous phase space ~ .  

However, we shall always regard the time evolution, or the dynamics, 
as a map S, smooth and smoothly dependent on all the parameters of the 
system. The map S acts on the "phase space" ~4 of the observed events, also 
called timing events, which could be, for instance, the occurrence of a 
microscopic binary "collision" in a particle system or the event in which a 
pre-fixed component of the velocity field assumes a certain value, or a 
maximum value, in fluid motions (e.g., a typical example is Lorenz '~24~ 
choice for timing the observations via the maxima of the variable he 
called Z). If x e f t ,  then V,x evolves in ~ until the next timing event: 
Sx = V,.,.,x E cr if t(x) is the time elapsing between the timing event x and 
the next one. 

The above chaotic hypothesis implies that the macroscopic time 
averages of observables are described by a probability distribution p on the 
"phase space" cg of the timing events. 

The existence of the distribution p is assumed a priori in general, as 
stated by the following extension t2~ of the zeroth law, ~35~ giving a global 
property of the motions generated by initial data chosen randomly with 
distribution Po proportional to the volume measure on cr 

Extended Zeroth Law. A dynamical system (~g, S) describing a many- 
particle system (or a continuum such as a fluid) generates motions that 
admit a statistics p in the sense that, given any (smooth) macroscopic 
observable F defined on the points x of the phase space cg, the time average 
of F exists for all p0-randomly chosen initial data x and is given by 

lim 1 r~, r -  ~_. Tk= o F(SJx) =s tl(dx') F(x') (1.1) 

where p is an S-invariant probability distribution on cg. 

If one assumes the chaotic hypothesis, then it follows that the zeroth 
law holds133"3'321; however, it is convenient to regard the two statements as 



Developed Turbulence 909 

distinct because the hypothesis we make is "only" that one can suppose 
that the system is Anosov for "pactical purposes": this leaves the possibility 
that it is not, strictly speaking, such, and some corrections may be needed 
to the predictions obtained by using the hypothesis. The corrections are 
supposed to become negligible in the thermodynamic limit (in statis- 
tical mechanics) or in the large-Reynolds-numbers regimes (in fluids): the 
hypothesis, in our arguments has a meaning similar to that of the ergodic 
hypothesis. The latter, too, is supposed to be very reliable (under general 
circumstances, as there are well-known exceptions, e.g., the free gas in 
statistical mechanics or some very special Navier-Stokes flows 129~) in the 
mentioned limiting situations; but it is very often equally reliable in systems 
with few degrees of freedom. 

Still the above principle may look at first sight quite abstract and, in 
the end, useless. Our idea in refs. 19 and 20 was that instead it could even- 
tually reveal itself comparably powerful to the ergodic hypothesis in equi- 
librium nondissipative systems. We began investigating whether this state- 
ment could be verified in some concrete cases of nonequilibrium systems 
governed by a reversible dissipation mechanism; we obtained the following 
results: 

1. The fluctuation theorem in reversible dissipative systems: the 
energy dissipation, or, more precisely, the entropy creation per timing event 
a(x) in the configuration x, identified with the logarithm of the inverse of 
the phase-space vohtme contraction e -~'-~, has a (future) time average 
( a ) §  positive by assumption, which is a fluctuating variable in the 
models considered. Therefore one can consider the average a~(x) of tr(x) 
evaluated on a time interval of r units during which the system evolves 
between S-~/2x and S~/2x: 

1 r / 2 - -  I 

aT(x)=-  ~ a(Skx) (1.2) 
2" k =  - - r /2  

Note that the timing events occur at varying time intervals: the time 
between the event x e cr and Sx, denoted above t(x), has an average value 
t o = ( t ( . ) )  and the entropy generation rate per unit physical (i.e., con- 
tinuous) time is toga(x). 

Reversibility is not contradictory with the presence of dissipation; see 
refs. 30, 5, and 20 and the models considered in the present work. 

We can study the probability distribution of this random variable with 
respect to the SRB distribution of the motion, i.e., in the stationary state. We 
introduce, for convenience, a dimensionless fluctuation variable p by setting 

a~(x)= ( a )  + p (1.3) 
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where p will (hence) have SRB average 1. Then the main result of refs. 6, 
19, and 20 is a general property of the probability distribution o f p  denoted 
n~(p) = e x p [ - - r ~ ( p ) ]  with respect to the stationary statistics/2 (i.e., with 
respect to the SRB distribution): 

1 n~(p) 
lim - -  log - -  = 1 for all p (1.4) 

. . . . . .  p r ( a )  + rr~(-p)  

The above property has no fi'ee parameters and it can be tested in numeri- 
cal experiments: in fact it was discovered in an experiment on particle 
systems in ref. 6 inspired by the literature on the SRB distributions; in ref. 6 
the connection with Ruelle's proposals was also hinted. A detailed discus- 
sion of the connection between the chaotic hypothesis and the f luctuation 
theorem (1.4) is presented in refs. 19 and 20, with some mathematical 
details worked out in refs. 13 and 14. 

The above result applies as well to certain fluid mechanics flows 
proposed first in ref. 34 and mentioned in refs. 19 and 20, and discussed 
again below, for completeness. The consideration of this kind of model 
goes back to older ideas (see ref. 30 for a review), which inspired also refs. 
6, 19, and 20. 

2. Onsager reciprocity: Suppose that the system is subject to external 
thermodynamic Jbrces, i.e., its equations of motion depend on parameters 
a, b, c .... such that the system is Hamiltonian when the parameter values 
are 0 and becomes dissipative but still reversible when they are different 
from 0. The response current J to variations of the parameters is defined 
together with its SRB average j as 

1 a~(x) 
J~,(x) - , ( 1.5 ) t o aa J,,= (J,,>sRa 

where to is the average time between timing events. 
Then, if the total energy of the system is kept constant, the reciprocity 

relation is 

d e f  , ~  , 

Oh j,, I,,j, = 0 d~=r L,n, = Ll,,, = ooJl .... I, = 0 (1.6) 

and it can be obtained from the above chaotic hypothesis in the case of 
various statistical mechanics modelsJ 17~ For  a general discussion of 
Onsager's reciprocity see refs. 4 and 7. 

Result 1 is a large-deviation theorem and (therefore) it can be tested 
only in systems with few degrees of freedom (because ~ is proportional to 
the number of degrees of freedom). It is, however, a prediction. 



Developed Turbu lence 911 

Result 2 is, instead, an a priori test of the hypothesis: in fact reciprocity 
is independently known to hold (for macroscopic systems). It is therefore 
not a prediction, but a check of consistency with the body of results that 
are considered independently establishedJ 4~ 

In this paper the above large-deviation theorem (already derived as 
the main result in refs. 19 and 20) is reproduced in the present context, for 
completeness as well as to introduce the basic ideas and notations 
associated with the chaotic hypothesis. Then we investigate the extension of 
the result 2 to a "one-shell model" defined in (6.2) below and related to 
the incompressible Navier-Stokes equation in the Kolmogorov-Obuchov 
scaling regime. We show that the chaotic hypothesis implies the validity of 
reciprocity relations, (6.15), comparing them (at a referee's request) with 
the Kraichnan fluctuation dissipation theorem, ~2~ from which they differ. 

2. A MODEL FOR DEVELOPED TURBULENCE 

We consider the Navier-Stokes (NS) equations in a box [ -L/2,  L/2] 3, 
with periodic boundary conditions and for an incompressible fluid. If the 
velocity field is written in a Fourier series as 

U(X) =- E e ik 'X~k  ( 2 . 1 )  
k~O 

with 7k complex vectors with ' ~ / k = ~ _ k  (reality of the velocity field) and 
7k 3_ k (incompressibility), then (it is well known and easy to check that) 
the NS equations become 

~'k = --i ~ (7k," k2) Hkykl  q- R2gk -- vk27k (2.2) 
kl + k2=k 

where /-/k is the orthogonal projection over the plane orthogonal to k; v is 
the kinematic viscosity and RZgu is the forcing (of course orthogonal to k), 
which will be taken to be nonzero only for a few components with small 
k. Since k = (2n/L) n with n integer, this means that the force acts only on 
the high-length-scale components. 

For simplicity we may think that the forcing has only two nonvanish- 
ing components R2gk,,, R2gk,,, corresponding to two linearly independent 

0 0 i 2. 
wave numbers k~, k 2. The simpler case of only one nonzero component 
can be trivial (e.g., in two-dimensional NS when the forcing acts on the 
smallest k, [kl = ko; ref. 29) and is therefore discarded here in favor of the 
next to the simplest. We shall keep g fixed throughout the analysis and we 
set g = m a x  [gk[. 
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The number R therefore determines the forcing strength and will be 
identified with the Reynolds number (we also keep the container size L and 
the viscosity v fixed). We take 7 o - 0  since "t0 is the conserved center-of- 
mass velocity. 

In order to obtain equations in the framework of this paper from the 
phenomenological theory of Kolmogorov-Obuchov/26~ we shall assume 
that the above equations can be replaced by the following simpler ones: 

~k = - - i  E ('tkl " k2) H k )  'k` + Regk  ' 
k I +k2=k 

~k = --(X'tk --  i E ('tkt "k2) Hk)Yk, ' 
kl +k2=k 

kR < Ikl < kR + (R2Zg),/2 v - l  

Ikl~<kR 

(2.3) 

where e is a suitable function of the velocity field (see below), and, if 
ko=2rr/L, the wave vector kR is the Kolmogorov momentum scale 
kR=ko R3/4 [ref. 26, p. 122, (32.6)]. We also set NR tO be the number of 
wavevector pairs ("modes") k, - k such that kR ~< Ikl <<. kR + (R2Lg),/2 v-  t; 
then N R ~ R 3. 

Then the total number of pairs k, - k  of modes considered is N ~ R 3, 
among which NR ~ R 3 are viscous modes, while the other N -  NR ~ R 9'4 are 
inertial modes. The number of independent components of the field 'tk i$ 4N 
(taking into account the reality and incompressibility conditions forces the 
'tk, ' t -k  to have only two linearly independent complex components). We 
call (2.3) the KO model. 

This means that the equations for the amplitudes 'tk corresponding to 
k's in the inertial range, ko~<lk[ ~<k R, are "governed" by the reversible 
Euler equations. In the viscous range, Jk[ > kR, the dissipation phenomena 
will be idealized by saying that the equations are simply such that only the 
modes k with kR < Ikl < kR + (R2Lg)~/2 v-~ have a nonzero amplitude and 
evolve in such a way as to keep the total energy constant. This means that 
the parameter 0c plays the role of an effective thermostat (or viscosity), 
which has to be chosen so that the total energy is constant, i.e., so that 
(d/dt) Y'.k I'tk[ 2=0:  

_ R '  ~(X) ~"~k -gk" 7--k 
Zlkl >kR IYk 12 (2.4) 

where x denotes the phase-space point, i.e., the full velocity field {'tk} with 
k in the above range. 
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The phase-space contraction rate is therefore the divergence of the 
r.h.s, of (2.3), i.e., ( 4 N R -  2)~(x). Hence the entropy generation per timing 
event is a(x) such that 

1 
-- ~(x) = (4N R - 2) ~(x) 
to 

'~-~k fk " " / -  k 

(4NR--2) -I Zlkl >~-. I~kl- 

do~" e(x) 
k,T(x) 

(2.:) 

where to is the average time between timing events and e(x) and ksT(x) 
(with ks = Boltzmann's constant) are simply defined respectively by the 
numerator and denominator of the above fraction defining ~(x). 

In (2.5) and in the following we neglect, for simplicity, the variability 
of the time t(x) elapsing between timing events. If one wishes to avoid this 
approximation, the r.h.s, of (2.5) should be replaced by to I times its 
integral over the continuum time trajectory over [0, t(x)] of 4NRo~(V,x) 
(using the notations fixed in Section 1). 

The Kolmogorov length k~ -~ is introduced here phenomenologically 
and we do not attempt a fundamental derivation of (2.3), (2.4); a class of 
similar models was first introduced in ref. 34. Therefore (2.3) has to be 
regarded as a phenomenological equation and just as an example of a class 
of models to which our derivation of the large-deviation theorem (fluctua- 
tion theorem) applies. 

The models in ref. 34 also would fall in the class of models for which 
the latter theorem holds (as a consequence of the coming analysis) they are 
models which are more physical as they a priori satisfy the scaling laws of 
Kolmogorov in the inertial range. 

Note that a is proportional to the work e(x) per unit time and per 
viscous degree of freedom performed on the system and dissipated into heat 
to keep the total energy fixed: the constant of proportionality is 1/ksT(x) 
with 

I I I 
Z l~kl 2 ~ kBT(x) - 4N R _ 2 2 Ikl >kR 

[which, however, is not constant in time on the motions described by (2.3), 
(2.4), because of the imposed constraint that Zk IYk] 2 is constant, rather 
than Y"lkl >*R I'/kl2)] �9 
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Hence ( a ) +  can be thought of as the average amount of energy dis- 
sipation by the flow per unit time divided by the kinetic energy per mode 
contained in the viscous modes. The first quantity plays a major role in 
Kolmogorov's theory (see ref. 26, p. 119), and its average is usually called 
e [see ref. 26, (31.1)]. Since the kinetic energy contained in the viscous 
modes can be considered as a kind of "temperature," we see that ( a )  + is 
proportional to an entropy "production rate." More appropriately, we can 
say that, for R large, ( a )  + is proportional to the "energy dissipation rate" 
over a kinetic quantity equal to the average kinetic energy contained in the 
viscous modes provided, for large R, the two quantities can be regarded as 
independent random variables (in the sense that the average of this ratio 
equals the ratio of their averages). 

Strictly speaking, the fluctuation theorem to be discussed below will 
concern the fluctuations of entropy creation rate a and not of the "energy 
dissipation" nor of the "temperature" individually. 

Note that for the above model (2.3) the time-reversal map 
i: {Yk} ~ {--Yk} has the property that i - '= 1 and iV,= V_, i  if V, is the 
flow generated by (2.3): see Section 1 for the notation. 

As discussed in Section 1, we shall call cg the space of the velocity 
fields "/with a fixed value U for the total kinetic energy and such that a 
fixed velocity component [e.g., an arbitrarily selected viscous component 
(Yk~)~ in the 1-direction] has a given value (or a local maximum, to follow 
ref. 24). We call c~ the space of the timhTg events because we shall imagine 
recording the velocity field every time one event x in cg occurs. Then the 
time evolution flow induces a map S on ~ mapping one element x ~ ~ into 
the event of the same type which occurs after it. If t(x) is the time between 
the timing event x and the next following it, it is Sx = V,~,.~x. 

The time-reversal symmetry for the continuum flow becomes the sym- 
metry Si = iS-~ on the timing map S, which we call the evolution map. 

A similar model is the one considered originally in ref. 34; in this model 
the equations of motion are given by the (2.3), but with the thermostatting 
forces --~"/k present also in the first equation in (2.3). The value of ~ is still 
determined by imposing the constancy of the total kinetic energy. Therefore 
(2.4) is modified by replacing the sum in the denominator by an unrestricted 
sum. This means that in this model T(x) is rigorously constant and there- 
fore there is a rigorous proportionality between the phase-space contrac- 
tion rate and the energy dissipation rate. Other models, also in ref. 34, also 
constrain the energy in each momentum-space shell 2"-~ko~< Ik[ ~<2"ko, 
n = 0, - 1  ..... in the inertial range to keep the energy content E ,  constant 
(and equal to the value predicted by the Kolmogorov-Obuchov theory, in 
agreement with the philosophy discussed in Section 3). 
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3. C H A O T I C  H Y P O T H E S I S  A N D  V A N I S H I N G  
L Y A P U N O V  E X P O N E N T S  

In the above models the dimension of the phase space ~ on which the 
time evolution is represented by a map between timing events is two units 
less than the dimension of the space of the velocity fields [where the 
motion is described by differential equations like (2.3)]. This reduction 
is useful not only because it eliminates a degree of freedom which is 
"trivial" (by fixing the energy, which is, in any event, constant), but also 
because it eliminates the degree of freedom corresponding to the direction 
of the flow which is responsible for the existence of a zero Lyapunov 
exponent. 

Obviously, had we not assumed the point of view of regarding the 
time evolution as a map on c~, then this would have caused us the problem 
that the chaotic hypothesis would have been in conflict with a basic 
property of Anosov systems; in fact, the Lyapunov exponents for such 
systems are separated from zero by a gap 2 > 0. 

But one may well have doubts that considering the evolution on a 
space of timing events is sufficient to avoid that the chaotic hypothesis runs 
into a manifest contradiction because of the possible existence of other 
vanishing Lyapunov exponents. For  instance, in some examples, e.g., 
model 2 in ref. 2, the dimension is reduced by four units because the equa- 
tions of motion preserve a component of the center-of-mass momentum, 
provided it has zero value, and also the corresponding center-of-mass posi- 
tion coordinate. If the total momentum is not initially zero, it relaxes to the 
value zero with a negative Lyapunov exponent, while the center-of-mass 
motion relaxes to a rectilinear motion with zero exponent. 

Therefore, fixing the values of the total momentum component and the 
center-of-mass coordinate further reduces the dimension by two and 
eliminates two more "trivial coordinates." 

In this case the conservation of the horizontal momentum is due to the 
special boundary conditions used: it was pointed out in ref. 20 that chang- 
ing the boundary conditions may turn the horizontal momentum and the 
center-of-mass position into a non-exactly conserved quantity, regardless of 
the value given to it initially. And in such circumstances we can expect that 
while the momentum evolves toward its stationary value (zero) at an 
exponential rate (i.e., "with a nonzero Lyapunov exponent"), the slow, 
almost linear motion of the center of mass generates a vanishing Lyapunov 
exponent, at least in the limit of large systems. 

But one should expect that when the system becomes large (i.e., in the 
thermodynamic limit) the boundary conditions should have negligible 
influence on the macroscopic properties of the system. Therefore the macro- 
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scopic dynamics may be insensitive to the above variability and, in conse- 
quence, adding as a constraint that the horizontal momentum vanishes 
exactly, hence the center-of-mass position is also on rectilinear motion 
exactly, should not affect the macroscopic behavior, at least if the forces 
needed to impose the constraint are provided by a minimal constraint prin- 
ciple (see below). 

Below we also refer, as another example, to the model 1 of ref. 20: a 
model of n particles in a periodic box interacting with each other and with 
an array of obstacles so that the force on the j t h  particle is fj. 

One should note that the above replacement of an almost conserved 
quantity by an exactly conserved one has in fact the consequence of 
eliminating a trivial pair of Lyapunov exponents: one is zero and one is 
negative and describes the relaxation to equilibrium of a macroscopically 
interesting quantity (the total horizontal momentum, i.e., the horizontal 
current, in the mentioned example). 

In ref. 20 it was proposed (in Section 8) that the latter mechanism 
might be quite general, in the sense that a nonequilibrium system may have 
many, perhaps very many, zero Lyapunov exponents (evidence in this direc- 
tion can be found in the basic paper of Livi et al.~28~); this does therefore 
(apparently) violate the chaoticity hypothesis of Section 1 strongly. 

In such systems the chaotic hypothesis can still be assumed, it was 
suggested in ref. 20, Section 8, if the dynamical variables responsible for the 
existence of the zero Lyapunov exponents can be identified together with 
the conjugate variables (which would have negative Lyapunov exponents, 
and which are expected to exist quite generally, at least if one accepts as 
quite generally valid some variation of the pairing rule discovered in ref. 5 
and discussed in refs. 8, 11, 20, and 16), and then one modifies the equa- 
tions of motion so that the identified variables are exactly constant (with 
the one with negative Lyapunov exponent fixed at its equilibrium value). 

The proposal in ref. 20 was that the minimal forces necessary to 
impose the constraint would not affect the macroscopic behavior of the 
motions: there by "minimal forces" we proposed to intend the forces 
prescribed by Gauss'principle o f  least constraint (see ref. 25, Vol. 112, p. 470, 
and Appendix A below), the idea being that the dynamics enforces the con- 
straint whether it is present or not, provided the constrained variables are 
assigned the appropriate stationary average vahtes. 

The chaotic hypothesis can then be used to describe the evolution of 
the remaining coordinates if one has taken into account all the macro- 
scopic constraints so that no zero Lyapunov exponents are present any 
longer. 

The question is whether one can identify concretely all the dynamical 
variables that can be fixed to have a well-defined value without affecting 
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the macroscopic behavior of the system. A guide to finding such variables 
should be the macroscopic equations that the system is supposed to obey. 
To give an example of what I have in mind, consider a dense gas which can 
be regarded as an incompressible inviscid fluid. In this case we can 
reasonably expect 19"23'-~7~ that the particle motion proceeds in such a way 
that the macroscopic average velocity field u(x) evolves according to the 
Euler equations, while the displacement field, relative to the initial con- 
figuration, changes accordingly. 

Therefore, given the solution of the Euler equations corresponding to 
the initial macroscopic state of the gas, t ~ u(x, t), one can impose that the 
average velocity locally coincides with u(x, t). This means that we can con- 
sider a lattice of cubes A~. with microscopically large and macroscopically 
small side c23~ and call x~. the center of the cubes. Then we can impose the 
constraints 

~. Z>,(qj)~ = u(x>,, t), ~.X~,(qj)(~-u)2=N~,ksT (3.1) 
./ J 

where T is the temperature and Z~, is the characteristic function of A r, via 
the imposition of auxiliary forces derived from Gauss' minimal constraint 
principle. ~25t The latter prescribes writing the equations 

with %,fl~, determined by imposing that the constraints are exactly 
satisfied: 

a~. =/l(x~., t) (3.3) 

and fl~. is determined likewise. 
One expects that in this way a very large number of coordinates which 

evolve with a negative Lyapunov exponent is eliminated; and that the 
corresponding position coordinates, i.e., the coordinates of the dis- 
placements with respect to the initial positions, change with a zero 
Lyapunov exponent. 

Some care has to be exercized here: the remaining coordinates will be 
supposed to vary with Lyapunov exponents separated by a gap 2 from the 
value zero, independent of the system size. This means that the evolution 
of the very large number of remaining coordinates takes place on a very 
fast time scale 2- t .  We can expect the latter to be the same time scale on 
which the local averages reach the "equilibrium" value given by u(x, t) 
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(this is a consequence of the pah'ing rule C5"2~ or of some of its variations, ~ 16) 
if accepted). On the other hand, the displacement variables should evolve 
with a zero Lyapunov exponent: but the latter is zero o n l y / f  compared to 

2. It may well be nonzero and very small so that its inverse is a macroscopic 
time, as is shown in many numerical experiments (that show positive 
Lyapunov exponents of the "Lagrangian motions"). 

This would mean that the chaotic hypothesis is valid for finite systems, 
in the space of the timing events, and that it becomes invalid, strictly 
speaking, only in the thermodynamic limit, when, however, it is not valid for 
trivial reasons; and assuming it simply corresponds to thinking that some 
approximate conservation laws have become exact macroscopic evolution 
laws, thus implying the vanishing of some Lyapunov exponents. The 
phenomenon can be avoided by imposing, already in finite systems, the 
approximate conservation laws as exact laws and eliminating the relative 
coordinates (thus restoring a uniform gap in the Lyapunov spectrum). 

In our fluid model the situation is likely to be similar; and one has to 
interpret accordingly the chaotic hypothesis: namely one has to think that 
there are no zero Lyapunov exponents or that if they are present they can 
be eliminated by adding extra forces that fix the value of some observables 
which would relax slowly to equilibrium (thus generating vanishing 
Lyapunov exponents) without affecting the behavior of the system (except 
of course with regard to the long-time correlations of the very same observ- 
ables evolving with vanishing Lyapunov exponents). 

As an example of the above discussion, one can argue that the model 
(2.3) and its modification in which the thermostatting forces act on all 
modes (considered at the end of Section 2, ref. 34) can be considered 
without obvious contradictions to satisfy the chaotic hypothesis for finite 
R, and uniformly in R at least as far as the properties of the observables 
that relax quickly to equilibrium are concerned. 

4. THE SRB D I S T R I B U T I O N  

The application of the chaotic hypothesis, as we proposed in refs. 19 
and 20, is very similar to the aplications of the ensembles method in equi- 
librium statistical mechanics. In that case one does not really need to 
evaluate all the monstrous integrals over phase space to deduce remarkable 
macroscopic properties: a great example is provided by Boltzmann's 
derivation of the heat theorem, ~2"~5~ i.e., of macroscopic thermodynamics. 

The chaotic hypothesis can perhaps be used in a similar way because 
it provides us (see below) with an apparently impossibly complicated 
expression for the SRB distribution; it is nevertheless an expression on 
which, as we have shown in refs. 19 and 20, one can work in some detail 
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and from which the concretely testable properties discussed in Section 1 
have been derived. 

The key point is that the hypothesis implies the possibility of defining 
a natural coarse graining of the phase space which is also mathematically 
precise (a problem that has been previously repeatedly debated without 
ever reaching clear conclusions, in my understanding at least). 

In fact in a transitive Anosov (or Axiom A) system one can define a 
partition ~ of phase space ~g into Jff sets El,  E2 ..... E..~,- which are 
"regularly" shaped (i.e., with nonempty interior, with boundary which has 
zero volume, and which is smooth at least in the sense of H61der continuity). 

The sets in o ~ have the (highly nontrivial) property that if one defines 
a compatibility matrix C~i by setting C o = 1 if the interior of SEi intersects 
the interior of E i and 0 otherwise, then any sequence j = (Jk)~ . . . . . . . .  such 
that CikJk+t = 1 for all k's (compatible sequence) is the history on & of  one 
and only one point x ~ <g, in the sense that Skx ~ Ej~ for all k's. 

Conversely, each point x ~ cg is generated by one compatible sequence, 
naturally called the history of x on g, in the sense that it is the only point 
in the intersection N~ S-kE/k �9 There may be more sequences determining 
the same point, but this happens for a zero-volume set of points (this is a 
quite trivial ambiguity, as it is similar--and in fact very closely related--to 
the well-known ambiguity that one has in representing the reals in basis 10 
by digits that end in a sequence of 9's or of O's). Furthermore, the matrix 
C admits a power C q with all the entries positive (this is a consequence of 
the transitivity). 

The above property allows us to think of the compatible sequences as 
a representation of our phase space and to regard the volume measure as 
a measure on the space of the compatible sequences. The SRB distribution 
p also can be regarded as a probability distribution on the space of the 
compatible sequences. The latter, in turn, can be conveniently regarded as 
the space of the spin configurations of a one-dimensional spin model (the 
spin at the site k being j~.). 

The distribution/t  has a remarkable representation when considered 
as a distribution on the space of the compatible sequences. To describe the 
representation we need some further notations. Given a symbol j, we can 
find a semiinfinite compatible sequence j+ = ( j , j ' , j " , . . . )  whose entries 
depend only on the value of j ;  likewise we can find a semiinfinite com- 
patible sequence j_ = ( .... j " ,  j ' ,  j) whose entries depend only on j. This 
property, a consequence of the above-mentioned transitivity, can be used 
to locate conveniently a point whose symbolic representation contains a 
string J~.b =J,,, J,,+ ~, Jb: one simply continues the string J,,,b into the infinite 
string, j = ( j_( j , ) ,  J~.h, J+(Jh)), obtained by merging sequentially the three 
strings j_(j,,), J,,.h, and J+(Jh). 
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Let E -  E - n M - 
- ~-,,....,z~,-, ~k= -M S-kEi~ : this is the set of points x such that 

S~xeEj~ for k = j _ M  ..... jM. We fix a point xu=-.~j_,,,.....z,,sEj_,,,.....z, , to be 
the point whose history is obtained by continuing the sequence j_  M,-.-, JM 
"to the right and to the left" into a biinfinite compatible sequence j as 
described in the previous paragraph. The point xe  will be called the center 
of E. 

The expansivity of an Anosov map implies that the sets E = Ei-.,,.....J.,, 
are very small (their diameter tends to zero as e -~'*~ if 2 is essentially the 
gap in the Lyapunov spectrum) and we can define a distribution PM by 
assigning a weight to each such set. The weight that we assign to them is 
related to the expansion coefficient A,,.~t(xE) of the map S M as a map 
between S-M/2XE and SM/2x E. 

The expansion (contraction) coefficient A,,(x) [respectively, As(x)] of 
S at x is the Jacobian determinant (evaluated at x) of the transformation 
S as a map of the unstable (stable) manifold W"(x) [ W"(x)] into itself. For 
a discussion of the notion of stable and unstable manifolds see refs. 31 and 
10. Therefore the expansion and 
.,T,..M(x), respectively, are given by 

contraction coefficients A,,.M(x) and 

~ '1 /2  - -  I M / 2  - -  I 

2,.~. ,(x)= r-[ A,,(Six), .4.~.M(x)= ]-I A.,.(SJx) (4.1) 
j = - -  A 4 / 2  j = - -  A~I/2 

and the distribution Pat is defined by giving to each Ei e g, vt, with center 
xEj=-.,O, a weight proportional to the product of the inverse expansion 
coefficient A,7.~(.-cfl times the inverse of the sine of the angle 8(SM/'-xi) 
formed by the stable and unstable manifolds at S*tnx �9 

aM(xfl ~r sin O(SM/2xj) 

Thus the integral of a smooth function F is 

s A,,.mO M ( xj ) F( xj) (4.2) / ~ . ( d x )  F(x )  %f Z j  - - '  -~ " - _ ,  
Zj A,,.M(xj) a ;/(-'9) 

This is interesting because the following theorem holds: 

T h e o r e m .  If fig, S) is a transitive Anosov system, the SRB distribu- 
tion/~ exists and the kt average of a local function F is 

I,(,~(dx) F(x)= Jim: s F(x) (4.3) 
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and "local" means that F depends "exponentially little" on the symbols 
with large-time label in the symbolic representation of the phase-space 
points [see above; i.e., I F ( x ) -  F(y)I is exponentially small as k ~ c~ if the 
histories of x, y at the times between - k  and k coincide]. 

The above is a trivial reformulation of a deep result of Sinai. It was 
pointed out in refs. 13 and 14 and used in refs. 19 and 20. I will call it 
Sinai's theorem. 

The original statement is that the SRB distribution/~ exists and it is 
a Gibbs state with potential log Afft(x); see refs. 3, 32, and 33 for a discus- 
sion of this form of the statement. 

The connection between ref. 33 and the above formulation is discussed 
in ref. 13, where (4.3) is discussed wi th / t  M defined as in (4.2) without the 
factors 6~(x j ) .  In spite of the apparently strong modification the extra 
factor 6~(Xi) introduces, it is easily seen that (4.3) is valid by examining 
the proof of an equation like (4.3) but with 6,~t~(x) replaced by 1 in the 
definition of (4.2) for/tM .(13" 14~ 

The proof is based on the interpretation of (4.2) as a probability dis- 
tribution on the space of the compatible strings. In this interpretation one 
immediately recognizes that (4.2) corresponds to a finite-volume Gibbs 
distribution for a suitable short-range Hamiltonian defined on the space of 
compatible strings. The extra factor 6M(Xj) corresponds to considering the 
same Gibbs distribution just with a different boundary condition: this 
becomes irrelevant in the limit as M ~ ~ because one-dimensional Gibbs 
states with short-range interactions do not have phase transitions and 
therefore are insensitive to changes in the boundary conditions. 

The choice (4.2) as an approximating distribution for/~ is much better 
than the one without the factors 6M(Xj)-~ because it leads to simpler for- 
mulas and arguments. I shall call (4.2) a balanced approximation to the 
SRB distribution because [see (4.5) below] it is reminiscent of a prob- 
ability distribution satisfying the detailed balance (which, however, is not 
verified in our models, except in zero forcing, i.e., in equilibrium). 

In the case in which the system is reversible (like the model in Sec- 
tion 2), i.e., when there is an isometric map i: cr cg such that i S=S- l i  
and i2=  1, one can add to all the above properties the further property 
that g can'be taken time reversible. This means that if E e gg,  then also 
iEe gg, with i being the time-reversal operation, and ixe=xiE. Further- 
more, recalling (1.2), the following symmetry holds: 

au(x) = - a M ( i x ) ,  ~.,M(ix) = ff.TL(x), 

~M(iX) =6__M(X ) 

6o(ix) = 6o (x )  
(4.4) 

822/86/5-6-2 



922 Gallavotti 

which are identities ~-'~ simply implied by the definition of a or by the fact 
that the i operation changes the stable manifold for S at x into the unstable 
manifold at ix (still for S). 

Furthermore, the following relation holds for A,,, A.,., ~, a: 

~( Sx  ) 
A,,(x) A,.(x) ~--~x) = e - " ' "  

OM(X) 
ff , .M(X) X,..M(X) 6_M(X) e A"" '"~=e M<,>+,, 

(4.5) 

if one recalls the definitions (1.2) and (1.3); the second relation follows 
from the first: the 1.h.s. is in fact the phase-space contraction under the map 
S M evaluated at the point S -~ /2x .  

For low-dimensionality systems the sets E i can be quite easily and 
effectively constructed; but the construction, which involves, among other 
things, solving the equations of motion for much data, quickly becomes 
practically impossible. ~ r2~ 

5. APPLICATIONS OF THE CHAOTIC HYPOTHESIS. 
FLUCTUATION THEOREM FOR THE KO MODEL 

We examine the KO model in (2.3), or the modification considered at 
the end of Section 2, and we suppose that the system is kept in a stationary 
state at a constant energy U under the action of a force field g and of the 
thermostatting mechanism provided by the terms - a ' / k  in the equations of 
motion. 

We study the probability that the fluctuation variable p is in a small 
interval I,~ = [q, q + dq]. We use the notations and the approximation lt~ to 
p described at the end of Section 4 [see (4.2)] with F ( x ) =  at(x); the prob- 
ability that p ~ I,~ over the probability that p E I_q is, for large r, 

A .... (xs) ~S~'(xi) ~.~j. pElq ----1 

(5.1) 
Z j . ,  ~ l_,, ff,7.~(xj) ~F I(-'~j) 

Since/~, in (4.2) is only an approximation at fixed ~, an error is involved in 
using (5.1). It can be shown that this error can be estimated to affect the 
result only by a factor bounded above and below uniformly in r,p. ~2~ 
This is a remark technically based on the proof of the theorem quoted in 
Section 4 (which relates the problem to the properties of a one-dimensional 
short-range Ising chain, a technical tool that is usually called the "thermo- 
dynamic formalism") and it is valid in general for any system satisfying 
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the chaotic hypothesis, i.e., for any reversible transitive Anosov diffeo- 
morphism.I -'~ 

It is now possible, by using the reversibility, to establish a one-to-one 
correspondence between the addends in the numerator of (5.1) and the 
ones in the denominator [ aiming at showing that corresponding addends 
have a constant ratio, which will therefore be the value of the ratio in 
(5.1)]. 

The ratio (5.1) can be written simply as 

ZE,.,~ ,., X,T.)(X;) 67 '(X~) _ Z~j . ,~ ,~  A,T.~(xj) 67 ' (x j )  
Z~:,.,,~,_,, ~i,7~ (.x3) 6 i - ' ( x j )  - Z ~ . , , ~ , , ,  .,i.,. ~(.x:;) 6_-'~(.vj) 

(5.2) 

where Xi ~Ei is a point in Er In deducing the second relation we make use 
of the existence of the time-reversal symmetry i and of (4.4). 

It follows then that the ratio between corresponding terms in the ratio 
(5.2) is equal to A,~.~(x) A.,S~(x)6U~(xj)/6E~(xj). This is, by (4.5), the 
reciprocal of the total variation of phase-space volume over the r time 
steps, if the evolution is regarded as a map on cg, between the point S-~/2x 
and S~/~-x; but the reciprocal of the total phase-space volume contraction 
over a time r is eq<~>+L Hence the ratio (5.1) will be e~<">+'% proving (1.4). 

It is important to note that there is one error ignored here. As pointed 
out in the discussion above, the use ofp~ to evaluate the probability is not 
immediately justified by the theorem of Section 4 as the function F of which 
we study the distribution is not a "local" function, because a~(x) in (1.2) 
is not localized. In fact, it depends at least on the part of the history of x 
for the time between - r / 2 ,  r/2 [hence we essentially need the knowledge 
of the symbols between - r / 2  and r/2 in the history of x to compute the 
value of a~(x)]. This is a delicate point which has been discussed in detail 
in refs. 13 and 14; showing that this interchange-of-limits is really not a 
problem at all requires going into the details of the proof of the theorem 
of Section 4. 

One should note that other errors may arise because of the 
approximate validity of our main chaotic assumption (which states that 
things go "as if" the system were Anosov): they may depend on R, i.e., 
on the number of degrees of freedom, and we do not control such errors 
except for the fact that, if present, their relative value should tend to zero 
as R ~  oo. 

The p independence of the limit in (1.4) is therefore a key test of the 
theory; and from the detailed estimates in ref. 14 one sees that the limit is 
reached as r ~ o o  with corrections of O(r -~) for p in a fixed bounded 
interval. 
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6. RECIPROCITY IN A M O D E L  FOR A SHELL M O T I O N  

In ref. 17 it is shown that the chaotic hypothesis implies also, in a variety 
of nonequilibrium statistical mechanics reversible models, the Onsager 
reciprocity relations. 

It is tempting to apply the above ideas to the models so far considered 
for fluids in states of developed turbulence. There is, however, a basic dif- 
ficulty. Namely, the above-mentioned derivations deal with "infinitesimal 
deviations from equilibrium," because they express properties of the second 
derivatives of the dissipation rate with respect to the thermodynamics 
forces evaluated at zero thermodynamic forces. 

The fluid models considered above (KO and its variation mentioned 
in Section 2) do not fulfill the condition of being close to equilibrium: in 
fact, we always imagine R to be very large so that the Kolmogorov- 
Obuchov theory (or some related theory) applies and the models may be 
regarded as describing chaotic motions and, at the same time, as physically 
reasonable. 

There is no known extension of Onsager reciprocity to strongly forced 
systems ~4j (see, however, ref. 18); therefore we shall not insist on studying 
the above models. But a possible application to fluid motions can be found 
by considering a related model. 

We consider a fluid whose velocity field contains only components 
with momenta in the range J~, defined by 2" ~k 0 ~< Ikl ~< 2"k 0, n ~ 0, con- 
taining N pairs k, - k :  this is often called a momentum shell. The equations 
of motion are 

"~k = --i ~ (Tk," k2) H k Y k  I -~- fk --~X"/k 
k l + k 2 = k  

2"-  ~ko <~ tkl, Ik, [, lk21 <~ 2%0 (6.1) 

and 0c is fixed so that the total kinetic energy is 2Nk a T; hence the relations 
between kinetic energy, the "friction" ~, and the phase-space contraction 
exponent a are 

1 
~', 17k[2=2NkBT 

k �9 .,/6, 

~-k ~. u,, fk" 7k 

4 N k a T  

Z k ~ , / t , ,  f k  " "[k 
0"--  

(6.2) 

ka T to 
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if to is the average time interval between timing events and a is correct up 
to an additive quantity of O(1) [as we replaced ( 4 N - 2 ) / 4 N  by 1 in the 
expression for a] .  As already mentioned after (2.5), for  simplicity o f  exposi- 
tion, we neglect that there is a difference between the actual time t(x) elaps- 
ing between the timing event x E ~ and the successive Sx, and that during 
such intervals a(V,x)  is not strictly constant. In fact a should be really 
written as an integral over the continuous time trajectory t ~ V,x described 
in the time t(x) while the point x evolves between x and Sx. 

This is a crude model for the motion of the velocity field components 
with momenta of scale n if the range ./#,, is in the inertial range of a 
strongly turbulent flow. And in this model we can ask about the reciprocity 
of the fluctuation responses with respect to the variations of the forces fk- 

Denoting by fl a pair (k, h) with h =  1, 2, 3 and setting f/~=fk.h and 
O/~=O/Ofk./. we want to show, under an extra assumption [see the two 
paragraphs following (6.14) below], that the chaoticity hypothesis implies 

0tr (O/~a),, Ir=o der = L  ~r = L/~./j, /r./~ - O/~(O/ra)~,lf=o (6.3) 

where p denotes the SRB distribution. In spite of its appearance, (6.3) 
requires some discussion of its meaning. The function t o ~a(x) is, by defini- 
tion, the phase-space entropy production rate. It is naturally defined on the 
phase space ~g. However, if ( a ) + > 0  (as it is the case for f ~ 0 ) ,  the 
motion is dissipative and the attractor A for the motion has zero 
volume. ~2~> In fact we expect, believing the pairing rule discovered in ref. 5 
(see also ref. 20), that the fractal dimension of A is macroscopically lower 
than that of rs 

Therefore the "relevant" values of the function a(x) are those for 
which x ~ A. But A as well as the SRB distribution p are f-dependent. 
Hence if we want to discuss the f dependence of a we must think that a is 
defined on a surface that generates the attractor, e.g., the unstable manifold 
of a fixed point O (or periodic motion) W'(O), and which depends on f. 

The consequence is that Ol~(a(x)) cannot be identified with the partial 
derivative of (6.2) [i.e., (to/kB T) 7/~], but one has also a contribution 
Oa(x)/Ox. Ox/Of/~, as the phase-space point x has to be fixed on the attrac- 
tor and it c.hanges therefore with f. 

A simple way to see this from a different point of view is to think of 
the attractor as represented via the symbolic strings j associated with a 
Markov partition: x = x ( j ) ,  as discussed in Section 4. 

The SRB distribution becomes a probability distribution over the 
family of compatible strings j and, in fact, it is a Gibbs state corresponding 
to a potential which has short range (i.e., a potential with energy per site 
given by the function log A,7 I ( X ( J ) ) )  �9 
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In this language the dynamics becomes f-independent and a becomes a 
function of the string a = a(x(j)). Therefore a depends on f for two reasons: 

1. a depends "explicitly" on f; see (6.2). 

2. x(j) depends on f as well, because the correspondence between 
strings j and points x(j) depends on the dynamics. 

Hence we shall use the more appropriate notation a(x)= s(f, x(j)) and 

Oa Os Os 0x(j) ( 6 . 4 )  (f, x(j)) . -E7  

Of course s(0, x( j ) )=  0, so that we get 

0 t 7  r = o CqS r = ~/~ -Of/, o (6.5) 

The proper interpretation of (6.3) is obtained by defining 0/, as in (6.4), 
which makes a difference even if we are only be interested in evaluating 
L/s/r at f = 0 .  In fact (6.3) involves the second derivative of a, for which a 
relation like (6.5) does not necessarily hold. 

We shall see below that (6.3) holds with the latter interpretation of 
O/,a. Hence we argue that the correct definition of the current j/, when f ~  0 
seems to be 

1 

J/' = ot-- (O/sa) (6.6) 

where O/,a is defined as in (6.4). However, from the discussion below it is 
seen that the contributions arising from the extra term in (6.4) eventually 
give a vanishing contribution to both sides of (6.3), which therefore can be 
interpreted in the usual naive way [i.e., with the derivatives Ol~a given by 
the first term in (6.4)]. There ought to be a simple way of seeing this 
apriori, perhaps as a consequence of the variational properties of the SRB 
distribution. 

One could also object that since the code j--* x(j) depends on f, it 
might happen that the space of the compatible sequences itself changes 
with f: i.e., that the compatibility matrix depends on f, introducing a 
further dependence of a on x and in fact a dependence on f of the symbolic 
dynamics itself. Although this might indeed happen at "large" (perhaps 
moderately large) values of f, it is a consequence of the Anosov structural 
stability theorem I1~ that the compatibility matrix C for the compatible 
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strings j does not change for small enough variations of the dynamics, 
hence of f. In fact, establishing the constancy of the stability matrix is the 
first step in the proof of the structural stability (and essentially the reason 
for the stability itself). 

The above definition (6.6) of the notion of current associated with a 
thermodynamic force seems to be new and it should be carefully under- 
stood and tested in the nonlinear regime. Here we assume by definition that 
the current associated with the thermodynamic force component f# is given 
by (6.6) with the derivative of a defined by (6.4). 

The proof of (6.3) now follows a natural scheme; see also ref. 17. We 
set, in an effort to simplify notations in the coming formulas, l .... and l~,~ 
a s  

l,,.,(x)=log[A/.~(x)6i-'(x)], l,..,(x)=log[X,.~(x)6E~,(x)] (6.7) 

so that, by (4.5), 

l,,..(x) - l.,..r(x) = r a , ( x ) ,  l , .,( ix) = I,.,(x) (6.8) 

and we see that to j#= <O#~> [see (6.6)] is the limit of the r.h.s, of (4.2) 
with F(x)= 0#a(x) and M = r  as r ~  oo. We can also say that <O#a> is the 
limit of (4.2) with F(x)= O#~(x), replacing ~r by its average (1.2) between 
- � 8 9  and �89 This is easily justified if one recalls the symbolic dynamics 
interpretation o f # r  (discussed after the theorem in Section 4) in terms of 
a one-dimensional Gibbs distribution for a short-range Ising model [see 
the second comment after (4.3)]. I will not discuss this (minor) technical 
point further. Hence 

lim toO#,j# 

Y'.j ,4,~,~(xj) 6~-~(xj)(O#,#a,(xj)+ O#,l,,.,(xj) O#a,(xj)) 

Zj.~,7.~'(xj) 5/- '(xj) 

-Zj- ' / ; . ;  ( x j )  ,~7 '(xj) a//,,. f fxj) 
- - _ |  

- - _ [  
x Z j  A .... (xj) 8;- '(xj) a/~a,(x j) 

Yv 2~.)(xi) ~/-'(x;) 

= l im  {(a#,#a~} + [(Olrl,,,~(xj) O#a~> - <ap, l,,.~>(apa~>]} (6.9) 
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By using the time-reversal invariance, we see that 

Y'. A,7.: 5 ~- I(xj) O /rl,,.,O /~cr , 
Z 

=E [ZI~'.~(.'~j) at-I(Xj)(~fl, l u . r ( X j )  ( ~ [ , ~ ' r ( X ] )  

. i  

+ J,~.~(ixj) 6~-'(L'r O/~,l,,.,(i,,(i ) O/~G,(ixj)]/2Z (6.10) 

where Z denotes the "partition sum," i.e., the sum in the denominator of 
(6.9), and the averages are with respect to the distribution/~. Recalling 
(6.7) and (4.4), this becomes 

Zj(A,T.t,(xj) 5 7 '(xj) O/,,I,,.,(X/) - Z,..,(xj) 5 -{ (x j )  a/,,l,..,(xj)) O/~a,(.~/) (6.11) 
2Z 

Equation (6.8) permits us to reconstruct rO/ra r out of the two addends in 
(6.11 ). And the derivatives at f =  0 can be computed immediately by noting 
that in such a case, by (4.5), (6.7), and (6.8) [note that (O/~a~)It=0=0] 

( ( O/rl,,.~Ora,) - < a/,,l,,,~)( az~a,> ) If=o 
r 

=-~ ( ( O/~,~O/~a~) - ( #/~,cr,) ( # /~cr~) )1 f=o (6.12) 

The quantity (Oa/~,a~) will converge to a limit (c3/j/ra) because the SRB 
distribution is stationary, neglecting an exchange of limit (see comments 
below); then, by using (1.2), we have 

O/rj/~[r lira {t ~ (a/~/~,cr) r 

1 r / 2 -  I r / 2  - -  1 

+~to X ~, [<o~,,<s'".)a/,o(s".)> 
m =  - r / 2  n = - - r / 2  

- (O/ra(S"")>(O/scr(S" ' ) ) ]  r=o} = 

=to(C~al ~'a) z=o+~o ~' [(C3/~,G(S"'.)C3eG(.)) i l l  = -- 

- < a ' ~ ' ~ ( ) > < a / ' ~ ( ) > ]  , = o  

(6.13) 
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where the averages in the r.h.s, are with respect to/~ = lim~_ ~ /~ .  This, 
again apart from a problem of interchange of limits (see comments below), 
becomes 

Oirjl~l,=o=37 Y" [(01,.a(S'".)OI, a(.))-<OI~,a(.))<O/~a(.))] 
1 " ~ 0  i l l  = - ~f_ 

1 f =  + -  < O l~l~,a ) 
t o  0 

-2t01 , , , ~ -  (Ol1,tT(S,,,.)Ol~tT(.)f=o) (6.14) 

where the averages are with respect to the SRB distribution (i.e., with 
respect to the limit of /~)  and the missing terms vanish because of time- 
reversal symmetry [for instance, (1/to)(O/qra) is seen, considering (6.2) 
and (6.4), to be proportional to the expectations (0/~7/r + 0/~,),/~), linear in 
7 and therefore vanishing by the time-reversal symmetry, at f = 0 ] .  

The problems of interchange of limits are easily solved: under our 
assumption that the system is a transitive Anosov system the correlations 
of smooth observables decay exponentially (because they become local 
observables in the symbolic dynamics interpretation of the evolution 
provided by the Markov partitions), not only for ~, but also for/~ (in the 
natural sense in which this may be interpreted in a finite-z case; e.g., by 
regarding the interval [ - z / 2 ,  z/2] as a circle), and uniformly in r. 

Note that here there is one hidden assumption: namely the "local 
observable" to which we want to apply the above argument is O/~a, which, 
by (6.8), contains, besides the really local part given by the first term in the 
r.h.s., a second part containing 0/ix(j) [and O/~x(~j), with 0 being the shift 
map on the symbolic sequences]: therefore we must assume that also 
O/jx(j) is "local" in the sense of the theorem in Section 4, which seems a 
reasonable assumption. For clarity and to distinguish what can be proved 
from what is believed to be true, I state this formally as follows. 

Conjecture. Transitive Anosov systems (or Axiom A systems) 
depending smoothly on a parameter f/~ are such that the function Ox(j)/Of/~ 
in (6.4) is local in the above sense. 

Strictly speaking, the interchanges of limits require this property in 
order to be justified as proposed. 

This also shows that (6.14) is indeed correct and therefore, recalling 
that L/~ B, = toa/rj/~, we get (6.3) as well as the important property that the 



930 Ga l l avo t t i  

matrix L/q~, is positive definite [see (6.14)]. One can check [by (6.2) and 
(6.4)] that the relation L m, = Ltr p is, in fact, 

0/~, (),/~)If= o = 0/j(~,/r)Ir=o (6.15) 

which is easier to interpret [and it follows from time reversal and the first 
of (4.4) at f =  0]. 

R e m a r k s .  (1) In checking (6.15), use has to be made of the fact that 
the "extra term" in (6.4), due to the fractality of the attractor, is proportional 
to f and therefore its contributions to the derivatives of j  vanish either because 
f vanishes (when the f derivative acts on quantities other than the extra term) 
or by symmetry (when the derivative acts on the extra term itself). 

(2) If one thinks that the above is a reasonable model for the evolu- 
tion of the velocity components relative to a shell in the inertial range, then 
the above relation should be subjected to experimental test. In any event 
the relations are very likely to be testable in numerical experiments on the 
solutions of equations (6.1). 

(3) One can remark that if Y/~--?k.h for f l = ( k , h ) ,  the above 
reciprocity relations can be written as the symmetry of the matrix 
0/~(7/r)t, It= o only if we consider transformations of the system which vary 
f but keep the total energy U =  2NkB T constant. 

(4) One certainly wants to consider also transformations in which U 
changes according to some equation of state U=g(f) .  The function g 
depends on the physical situations, i.e., on the actual mechanism of dissipa- 
tion that generates the model (6.3); however, if the model is regarded only 
as a mathematical fiction, then of course the equation of state is arbitrary. 
In any case, given g, the above derivation of the reciprocity relations still 
holds up to some natural modifications, but the symmetry in fl, fl' of 
0/j,(c3/~a) does not directly mean the symmetry (6.15). One can, however, 
check that it implies at f = 0 that 

a / ,  aO U) O/r(y/~--~O,~U) , = o = O p \ ~ , , ~ . - ~  p, r=o (6.16) 

which still implies (6.15) (again by the time-reversal symmetry). This is in 
agreement with the philosophy exposed in Section 3. 

(5) The "Onsager reciprocity" (6.15) is for a quantity that in the 
more standard notations of Section 2 would be written as 

O(Tk'i) f =  Ofk'.i o (6.17) 
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This should not be confused with an important object in many turbulence 
theories, defined more generally as a two-times object ~2~'221 

/ O)'u.,(t__.__~)\ , (6.18) Gij(kt, k ' t ' ) =  \ Ofw,y( t,) / =o 

the so-called mean responsefimction, which is related to the propagators in 
some field-theoretic formulations of turbulence.122~ Equation (6.18) is there- 
fore different from the quantity in (6.15), where the average is taken before 
the differentiation. In the present paper all the averages are first evaluated 
at nonzero forcing and, after differentiating them when appropriate, 
evaluated at zero forcing. Note that if in the 1.h.s. (or r.h.s.) of (6.18) one 
takes the limit t ~  t + one gets zero instead of (6.15), and the quantities 
directly studied in ref. 21 also become trivial if t=t '  [see (17) in ref. 21]. 

Equation (6.18) has also been studied in connection with models 
similar to the above model (6.1). An important reference here is ref. 21, and 
especially ref. 22, Section 3. The model (6.1) in the case f = 0  corresponds 
to the "absolute equilibrium state" for a "cutoff Euler dynamics" discussed 
in those works, except that in refs. 21 and 22 the canonical distribution for 
fl = 1/k B T is usually studied and a set of Fourier modes with wavenumbers 
Ikl ~<k ..... is considered, whereas here we study instead an equivalent 
microcanonical distribution for a set of Fourier modes 2"-Lk o ~< Ikl ~< 2"ko. 

In ref. 21 a different "fluctuation-dissipation theorem" is derived, i.e., 
Gu(kt, k't ') = f t .  U~i(kt, k't'), where U~(kt, k't') = (yki(t) ywj(t')) is the 
two-times autocorrelation of the velocity Fourier coefficients. The deriva- 
tion follows from principles other than the chaoticity principle: for 
instance, the dynamics conserves exactly the volume in phase space, even 
in the presence of dissipation [see (9), (2), and the comment following (9) 
in ref. 21 ]. 

One should finally note that for the same model (6.1) the fluctuation 
theorem [see (1.4)] also holds and the fluctuation theorem has been 
proposed in ref. 18 as an extension to arbitrary forcing of Onsager's rela- 
tions, and it can very likely be interpreted (together with the 1973 Ruelle 
principle, in the formulation of the above chaotic hypothesis) as at least a 
first step toward a proposal for a new technique in fluid mechanics, whose 
need is sought in the concluding paragraph of ref. 22 (for further recent 
developments of this idea see ref. 16). 

A P P E N D I X .  GAUSS" M I N I M A L  C O N S T R A I N T  PRINCIPLE 

Let cp(/q x) =0,  x = {~j, xj} be a constraint and let R(~, x) be the con- 
straint reaction and F(~, x) the active force. 



932 Gallavotti 

Cons ide r  all the poss ible  accelera t ions  a compa t ib l e  with the con-  
s t raints  and  a given initial  s ta te  ~, x. Then  R is ideal or  satisfies the prin-  

ciple o f  min imal  constraint  if the ac tua l  accelera t ions  a ~ = ( 1 / m A ( F ~ +  RA 
minimize  the efJbrt: 

N l N 

y. - -  i f ' t -  re;a,) 2 ,--, Z ( F , - m , a , ) .  ,~at = 0  
i = I I H  i i = I 

(A.1) 

for all poss ible  var ia t ions  fia~ compa t ib l e  with the cons t ra in t  q). 
Since all poss ible  acce lera t ions  fol lowing ~ , x  are 

y~iN- - t O,,~(X, X). t~a i = 0, we can write 
such tha t  

F i -- m i a  i -- cta,,q~(~, x) = 0 (A.2) 

with cc such tha t  (d/dt)  ~o(x, x ) =  O, i.e., 

~'~i( Xi " O ,,r "t- ( l / m i )  F i �9 O ~:/p ) 
(A.3) 

which is the analyt ic  express ion of  Gauss '  pr incipleJ  2s~ 
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